(11), 95 (25), 77 (15); HMRS m/z calcd 230.1143, obsd 230.1128; ¹H NMR δ 7.5–7.1 (m, 5H), 3.05 (s, 2H), 2.5–2.0 (m, 11H); ¹³C NMR δ 150.16, 128.30, 125.97, 124.71, 44.18 (C_{4,9}), 41.70 (C₆), 37.61 (C _{8,10}), 35.37 (C₆), 34.55 (C_{1,8}), 28.14 (C₇).

5-Phenyl-2-thiaadamantane S-Oxides E- and Z-2. Oxidation of 1 by any of the means detailed below gave liquid mixtures of E and Z-2 would could not be separated: ¹H NMR δ 7.3–7.0 (m, 5H), 3.15 and 3.08 (2s, 2H, H_{1,3} (Z and E, respectively)), 2.88 and 2.76 (2d, 2H, H_{4,9ax} (Z) H_{6,10ax} (E), respectively, J = 13.5 Hz), 2.25–1.60 (m, 9H); the assignments rest on a ¹H-¹³C NMR correlation spectrum; ¹³C NMR δ 148.56, 147.54, 128.38, 128.28, 126.37, 126.21, 124.47, 49.37 (C_{1,3} (Z)), 48.65 (C_{1,3} (E)), 40.54 and 40.04 (C₆ (E) and (Z)), 38.57 (C_{8,10} (E), calcd 38.18, slope 4.5), 33.58 and 33.30 (C₈ (E) and (Z)), 31.63 (C_{8,10} (Z), calcd 32.84, slope 1.1), 31.39 (C_{4,9} (Z), calcd 31.16, slope 4.0), 25.78 and 25.61 (C₇ (E) and (Z)), 24.94 (C_{4,9} (E), calcd 24.81, slope 1). The calculated values for C_{4,9} and C_{8,10} are based on those of thiaadamantane, 5-phenyl-2-thiaadamantane, and thiaadamantane of Eu(fod)₈, in arbitrary units.

Oxidations of 1. With Oxone: a solution of this reagent (0.10 g, 0.32 mM) in water (2.5 mL) was added to a solution of 1 in acetone (2 mL) and methanol (3 mL) at 0 °C in 10 min. After 30 min, 5 mL of aqueous NaHSO₈ (10%) was added. After extraction with CH₂Cl₂ and evaporation of the solvent, a colorless liquid residue consisting of *E*- and *Z*-2 was obtained in 98% yield which was analyzed by ¹H NMR (H_{1,3} signals). With NaIO₄: a solution of this reagent (20 mg, 0.093 mM) in water (5 mL) was added at 0 °C to a solution of 1 in methanol (1 mL) and kept at that temperature for 7 h. The yield was 80% after workup as above. With N₂O₄: this reagent (liquified, 2 mL) was added to

1 (20 mg, 0.09 mM) dissolved in CH_2Cl_2 (2 mL) at 0 °C. After 30 min, the solvent and the reagent were allowed to evaporate and the residue was analyzed as before. It was also verified that other mixtures reached the same composition upon treatment with this reagent. With m-CPBA: a mixture of m-CPBA (30 mg, 0.17 mM), CH_2Cl_2 (7 mL), and 1 (20 mg, 0.09 mM) was allowed to react at 0 °C for 12 h. After the mixture was quenched with NaHCO₃ and worked up, the product was analyzed as before. With tert-butyl hypochlorite: this reagent (1.2 equiv), dis solved in methanol (2 mL) and CH_2Cl_2 (2 mL), was added to 1 (30 mg, 0.14 mM) in methanol (3 mL) at -78 °C. The dry iceacetone bath was allowed to warm to -40 °C, whereupon anhydrous Na₂CO₃ was added. When the mixture had reached rt, the solvent was removed and the residue worked up and analyzed in the usual way.

Acknowledgment. We thank Mr. P. Joshi for some of the initial experiments. We profited from discussions with Professors C. Johnson and J. Marino. We also acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Supplementary Material Available: ¹H and ¹³C NMR spectra of the new compounds mentioned in this paper and plots of the effect of Eu(fod)₃ on the ¹³C NMR chemical shifts of the sulfoxides (27 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Additions and Corrections

Vol. 58, 1993

Rui Tamura, Masatoshi Kohno, Sei Utsunomiya, Kunihiko Yamawaki, Nagao Azuma, Akira Matsumoto, and Yasutaka Ishii. Synthesis of PBG₁ Analogues by Radical Chain Substitution Reaction.

Page 3953, column 1, lines 16–19. Introduction should read Its intriguing photochemical behavior shows that the single electron transfer reaction from RNu^{*-} to RX should be the rate-determining step in the dark.³